OSI Model
The Open Systems Interconnection model (OSI model) is a conceptual model that characterises and standardises the communication functions of a telecommunication or computing system without regard to its underlying internal structure and technology. Its goal is the interoperability of diverse communication systems with standard communication protocols.

The model partitions the flow of data in a communication system into seven abstraction layers, from the physical implementation of transmitting bits across a communications medium to the highest-level representation of data of a distributed application. Each intermediate layer serves a class of functionality to the layer above it and is served by the layer below it. Classes of functionality are realized in software by standardized communication protocols.

The OSI model was developed starting in the late 1970s to support the emergence of the diverse computer networking methods that were competing for application in the large national networking efforts in the world. In the 1980s, the model became a working product of the Open Systems Interconnection group at the International Organization for Standardization (ISO). While attempting to provide a comprehensive description of networking, the model failed to garner reliance by the software architects in the design of the early Internet, which is reflected in the less prescriptive Internet Protocol Suite, principally sponsored under the auspices of the Internet Engineering Task Force (IETF).

In the early- and mid-1970s, networking was largely either government-sponsored (NPL network in the UK, ARPANET in the US, CYCLADES in France) or vendor-developed with proprietary standards, such as IBM's Systems Network Architecture and Digital Equipment Corporation's DECnet. Public data networks were only just beginning to emerge, and these began to use the X.25 standard in the late 1970s.

The Experimental Packet Switched System in the UK circa 1973-5 identified the need for defining higher level protocols. The UK National Computing Centre publication 'Why Distributed Computing' which came from considerable research into future configurations for computer systems, resulted in the UK presenting the case for an international standards committee to cover this area at the ISO meeting in Sydney in March 1977.

Beginning in 1977, the International Organization for Standardization (ISO) conducted a program to develop general standards and methods of networking. A similar process evolved at the International Telegraph and Telephone Consultative Committee (CCITT, from French: Comité Consultatif International Téléphonique et Télégraphique). Both bodies developed documents that defined similar networking models. The OSI model was first defined in raw form in Washington, DC in February 1978 by Hubert Zimmermann of France and the refined but still draft standard was published by the ISO in 1980.

The drafters of the reference model had to contend with many competing priorities and interests. The rate of technological change made it necessary to define standards that new systems could converge to rather than standardizing procedures after the fact; the reverse of the traditional approach to developing standards. Although not a standard itself, it was a framework in which future standards could be defined.

In 1983, the CCITT and ISO documents were merged to form The Basic Reference Model for Open Systems Interconnection, usually referred to as the Open Systems Interconnection Reference Model, OSI Reference Model, or simply OSI model. It was published in 1984 by both the ISO, as standard ISO 7498, and the renamed CCITT (now called the Telecommunications Standardization Sector of the International Telecommunication Union or ITU-T) as standard X.200.

OSI had two major components, an abstract model of networking, called the Basic Reference Model or seven-layer model, and a set of specific protocols. The OSI reference model was a major advance in the standardisation of network concepts. It promoted the idea of a consistent model of protocol layers, defining interoperability between network devices and software.

The concept of a seven-layer model was provided by the work of Charles Bachman at Honeywell Information Systems.[8] Various aspects of OSI design evolved from experiences with the NPL network, ARPANET, CYCLADES, EIN, and the International Networking Working Group (IFIP WG6.1). In this model, a networking system was divided into layers. Within each layer, one or more entities implement its functionality. Each entity interacted directly only with the layer immediately beneath it and provided facilities for use by the layer above it.

The OSI standards documents are available from the ITU-T as the X.200-series of recommendations. Some of the protocol specifications were also available as part of the ITU-T X series. The equivalent ISO and ISO/IEC standards for the OSI model were available from ISO. Not all are free of charge.

OSI was an industry effort, attempting to get industry participants to agree on common network standards to provide multi-vendor interoperability. It was common for large networks to support multiple network protocol suites, with many devices unable to interoperate with other devices because of a lack of common protocols. For a period in the late 1980s and early 1990s, engineers, organizations and nations became polarized over the issue of which standard, the OSI model or the Internet protocol suite, would result in the best and most robust computer networks. However, while OSI developed its networking standards in the late 1980s, TCP/IP came into widespread use on multi-vendor networks for internetworking.

The OSI model is still used as a reference for teaching and documentation;[16] however, the OSI protocols originally conceived for the model did not gain popularity. Some engineers argue the OSI reference model is still relevant to cloud computing. Others say the original OSI model doesn't fit today's networking protocols and have suggested instead a simplified approach.

The design of protocols in the TCP/IP model of the Internet does not concern itself with strict hierarchical encapsulation and layering.[37] RFC 3439 contains a section entitled "Layering considered harmful".[38] TCP/IP does recognize four broad layers of functionality which are derived from the operating scope of their contained protocols: the scope of the software application; the host-to-host transport path; the internetworking range; and the scope of the direct links to other nodes on the local network.

Despite using a different concept for layering than the OSI model, these layers are often compared with the OSI layering scheme in the following manner:

The Internet application layer maps to the OSI application layer, presentation layer, and most of the session layer. The TCP/IP transport layer maps to the graceful close function of the OSI session layer as well as the OSI transport layer. The internet layer performs functions as those in a subset of the OSI network layer. The link layer corresponds to the OSI data link layer and may include similar functions as the physical layer, as well as some protocols of the OSI's network layer. These comparisons are based on the original seven-layer protocol model as defined in ISO 7498, rather than refinements in the internal organization of the network layer.

The OSI protocol suite that was specified as part of the OSI project was considered by many as too complicated and inefficient, and to a large extent unimplementable. Taking the "forklift upgrade" approach to networking, it specified eliminating all existing networking protocols and replacing them at all layers of the stack. This made implementation difficult and was resisted by many vendors and users with significant investments in other network technologies. In addition, the protocols included so many optional features that many vendors' implementations were not interoperable.

Although the OSI model is often still referenced, the Internet protocol suite has become the standard for networking. TCP/IP's pragmatic approach to computer networking and to independent implementations of simplified protocols made it a practical methodology. Some protocols and specifications in the OSI stack remain in use, one example being IS-IS, which was specified for OSI as ISO/IEC 10589:2002 and adapted for Internet use with TCP/IP as RFC 1142.

info © Wikipedia